Fast Algorithm for Sparse Signal Approximation using Multiple Additive Dictionaries
نویسندگان
چکیده
There are several models for sparse approximation: one where a signal is a sparse linear combination of vectors over a redundant dictionary and a second model in which a collection of signals is a simultaneous sparse linear combination over a single dictionary. In this work, interpolate between these two models to synthesize a single signal of interest from K highly incoherent dictionaries while enforcing simultaneous sparsity on the K resulting coefficient vectors. We define this as the parallel approximation problem, which arises quite naturally in many applications such as MRI parallel excitation using multiple transmission coils. We present an efficient algorithm to solve the parallel approximation problem called Parallel Orthogonal Matching Pursuit (POMP). We prove its correctness in a general setting and then discuss adaptations needed to make it suitable for use in an MRI parallel excitation setting. We then discuss parallel excitation in more detail and demonstrate how POMP solves the problem as accurately, but much faster, than previously proposed convex optimization methods.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملRedundancy Encoding for Fast Dynamic MR Imaging using Structured Sparsity
For dynamic magnetic resonance imaging (MRI) applications, a critical requirement is to reduce image acquisition times while maintaining high resolutions and signal-to-noise ratios. In this paper, a fast MRI technique based on encoding of the k-space redundancy using data-driven dictionaries learned for sparse representation of signals is presented. The novelty of the technique lies in separati...
متن کاملCooperative greedy pursuit strategies for sparse signal representation by partitioning
Cooperative Greedy Pursuit Strategies are considered for approximating a signal partition subjected to a global constraint on sparsity. The approach aims at producing a high quality sparse approximation of the whole signal, using highly coherent redundant dictionaries. The cooperation takes place by ranking the partition units for their sequential stepwise approximation, and is realized by mean...
متن کاملK-SVD and its Non-Negative Variant for Dictionary Design
In recent years there is a growing interest in the study of sparse representation for signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described as sparse linear combinations of these atoms. Recent activity in this field concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009